Water Molecular Motion and Hydrogen Bond in Paramagnetic [Cu(H₂O)₆][PtCl₆] as Studied by Single Crystal ²H NMR

Motohiro Mizuno, Takahiro Iijima, Kengo Orii, and Masahiko Suhara Department of Chemistry, Faculty of Science, Kanazawa University, Kanazawa 920-1192, Japan Reprint requests to Dr. M. M.; E-mail: mizuno@wriron1.s.kanazawa-u.ac.jp

Z. Naturforsch. **55 a,** 178–182 (2000); received August 23, 1999

Presented at the XVth International Symposium on Nuclear Quadrupole Interactions, Leipzig, Germany, July 25 - 30, 1999.

The temperature and angular dependences of the 2 H NMR spectrum were measured for single crystal [Cu(H₂O)₆][PtCl₆]. (e^2Qq/h , η) = (132 kHz, 0.72) were obtained for the D nucleus averaged by the fast 180° flip of the water molecule at 297 K. D_I(236 kHz, 0.10) and D₂(246 kHz, 0.09) were obtained for two unequal D nuclei of the water molecule at 133 K. Below T_c , at least three nonequivalent waters were found to exist. The jumping rate for the 180° flip of the water molecule (k) was obtained from the simulation of 2 H NMR spectra at H_0 [[111] direction. The activation energy E_a and the jumping rate at infinite temperature were estimated from the temperature dependence of k to be 24kJmol⁻¹ and 1 × 10¹³s⁻¹.

Key words: Phase Transition; ²H NMR; Nuclear Quadrupole Interaction; Paramagnetic Shift; Molecular Dynamics.